South Ural State University Faculty of Computational Mathematics and Informatics

Course Descriptions in Fundamental Computer Science and IT MAJOR: Technologies for Game Development

		ECTS cr
B.1.02	Mathematical Foundation of Information Security	3
B.1.03	Algorithmic Foundation of Multimedia Technologies	2
B.1.05	Java Programming	3
V.1.01	Mobile Programming	4
DV.1.01.01	Markup Languages	3
DV.1.02.01	Advanced Methods of Software Development	2
B.2.01	Information Technology Analysis	2
B.2.02	Object-oriented CASE Technologies	2
B.2.03	Object Databases	2
B.2.04	Distributed Object Technologies	3
B.2.05	Distributed and Parallel Programming	4
V.2.01	Seminar on Advanced Technologies for Computer Game Development	4
V.2.02	Artificial Intelligence for Games	2
V.2.03	Computer Animation and Simulation	2
DV.2.01.01	Game Platform Development	3
DV.2.02.01	Social Network Game Development	2

B.1.02	MATHEMATICAL FOUNDATIONS OF	3 ECTS cr
	INFORMATION SECURITY	
Year and	Year 1	
Semester	Semester 1	
Teacher(s)	Rifkhat Aleev, Doctor of Science, Professor of System F Department.	Programming
Aims	The student obtains basic skills in mathematical method security. Upon completion of the course, the student will implement basic algorithms of information protection.	
Content	Factorization of large numbers. Discrete logarithm. Groups Basics of information theory. Linear codes. Error detection Symmetric and asymmetric ciphers. Diffie-Hellman requirements of the cryptosystem. Digital signature. Computer system, accellentification and authentication. Password-based protections of the computer system.	ion and correction. uirements. RSA ess, security policy.
Modes of Study	Lectures 18 h. Practical assignments 36 h. Self-study 54 h. Total 108 h.	
Evaluation	2-5	
Study Materials	Materials are delivered/announced during classes.	
Prerequisites	Bachelor courses are required:	
•	B.2.04 Algebra and Geometry	
	B.2.04 Finite graph theory and its applications	
	B.03.02 Discrete mathematics	

B.1.03	ALGORITHMIC FOUNDATION OF MULTIMEDIA 2 ECTS cr
	TECHNOLOGIES
Year and	Year 2
Semester	Semester 3
Teacher(s)	Mikhail Mezhenin, Master of Science, Assistant Lecturer of System Programming Department
Aims	The student obtains basic knowledge of algorithms used to encode, compress and process multimedia data. Upon completion of the course, the student will be able to design and implement algorithms and applications for working with different multimedia data.
Content	Modern multimedia technologies. Data encoding and compression: run- length encoding, working with binary data. Image processing: Netpbm project, encoding and converting full-color and grayscale images, dithering, Floyd-Steinberg algorithm. Multimedia libraries: FFmpeg, Simple DirectMedia Layer. Media-player development: reading, demuxing, decoding and playing multimedia data.
Modes of Study	Practical assignments 36 h. Self-study 36 h. Total 72 h.
Evaluation	Passed Failed.
	Credit test – 30%, practical assignments – 70%.
Study Materials	Materials are delivered/announced during classes.

B.1.05	JAVA PROGRAMMING	3 ECTS cr
Year and	Year 1	
Semester	Semester 1	
Teacher(s)	Artem Nabirkin, Lecturer of System Programming Department	ent
Aims	The student obtains basic skills in Java programming language completion of the course, the student will able to develop his Java applications using modern design techniques (OOP, or patterns, etc.).	igh-quality
Content	Introduction to the Java language. Java programming envir types and type conversion. Objects, classes, packages. Ob programming in Java basics. Operators and the structure of Exception handling and debugging. Collections. Execution synchronization, work with files. java.lang, java.awt packag library, user interface development. The garbage collector. patterns. Internationalization.	ject oriented f the code. of threads, es. Swing
Modes of Study	Practical assignments 54 h. Self-study 54 h. Total 108 h.	
Evaluation	2-5. Exam 50 %, practical assignments 50 %.	
Study Materials	Materials are delivered/announced during classes.	

V.1.01	MOBILE PROGRAMMING	4 ECTS cr	
Year and	Year 2		
Semester	Semester 3		
Teacher(s)	Aleksandr Gorskih, Master of Science, Assistant Lecturer Programming Department	cience, Assistant Lecturer of System	
Aims	The student obtains basic skills in mobile programming. Use of the course, the student will be able to design and impleations for mobile devices.	• • •	
Content	Introduction: xCode, Objective-C, Cocoa API. Mobile GU StoryBoard, segue, gesture recognition, AnimationKit, IB, Data processing in iOS: iCloud, CoreData, MapKit, account accelerate framework, CoreBluetooth, CoreLocation. Gar OpenGL ES 2.0, AV Foundation, Game Center, GameKit development framework: iOS MVC, OCMock, OCUnit, Clintegration).	onKit, IBAction, IBOutlet. Kit, accounts framework, ation. Game development: GameKit. iOS application	
Modes of Study	Practical assignments 54 h. Self-study 54 h. Total 108 h.		
Evaluation	2-5. Practical assignments 50 %, exam 50 %.		
Study Materials	Materials are delivered/announced during classes.		

DV.1.01.01	MARKUP LANGUAGES 3 ECTS of	r	
Year and	Year 1		
Semester	Semester 1		
Teacher(s)	Elena Ivanova, Master of Science, Senior Lecturer of System Programming Department		
Aims	The student obtains basic skills in markup languages. Upon completion of the course, the student will be able to apply World Wide Web Consortium (W3C) technologies in document processing.	World Wide Web Consortium	

Content	Introduction to markup languages: motivation, classification and basic elements – tags, elements and attributes. Hypertext Markup Language (HTML). Cascading Style Sheets (CSS). XML technologies. Document Type Definition (DTD). Navigating in XML-documents using XPath language. Transformation and visualization of XML-documents using XSL (eXtensible Stylesheet Language). XML Schema. Linking of XML-elements using XLink and XPointer languages. Scalable Vector Graphics (SVG) language.
Modes of Study	Practical assignments 54 h.
	Self-study 54 h.
	Total 108 h
Evaluation	2-5. Practical assignments 50 %, exam 50 %.
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Influences Web-based programming course (bachelor).

DV.1.02.01	ADVANCED METHODS OF SOFTWARE	2 ECTS cr
	DEVELOPMENT	
Year and	Year 1	
Semester	Semester 2	
Teacher(s)	Olga Ivanova, Candidate of Science, Associate Professor of S Programming Department	System
Aims	The student obtains basic skills in object-oriented methods fo systems development. Upon completion of the course, the stuable to design and implement applications using design patte driven development, refactoring and SOLID methodology.	udent will be rns, test-
Content	General principles of object-oriented design. The concept of of The SOLID methodology. Test-driven development (TDD) an refactoring. Basic design patterns: Abstract Factory, Singleton Bridge, etc. MVC (Model-View-Controller) patterns. Basic tem design of enterprise applications: Allocator, Plug-in, Selected etc. ORM technology and examples of its implementation.	d n, Adapter, nplates for
Modes of Study	Practical assignments 36 h. Course project (self-study) 36 h. Total 72 h	
Evaluation	Passed Failed. Credit test 20%, practical assignments 40%, or project 40%.	course
Study Materials	Materials are delivered/announced during classes.	
Prerequisites	Object-oriented CASE technologies	

B.2.01	INFORMATION TECHNOLOGY ANALYSIS	2 ECTS cr	
Year and	Year 2		
Semester	Semester 3		
Teacher(s)	Fedianina Raisa, Senior lecturer of System Programming		
Aims	The student obtains basic skills in IT standards and global infrastructure technologies. Upon completion of the cours will be able to develop profiles of information systems and conformance testing of such profiles.	urse, the student	
Content	The concept of open systems; system of IT standards and organizational structure. Profiles of open systems environ profiles). Methodology and system of POSIX OSE standards.	ment (OSE	

	of standards. Specification of network protocols and their services.
	Methodology and technology of OSI conformance testing. Concept of
	global information infrastructure.
Modes of Study	Practical assignments 36 h.
	Self-study 36 h.
	Total 72 h.
Evaluation	2-5. Practical assignments 50 %, exam 50 %.
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Object-oriented CASE-technologies

B.2.02	OBJECT-ORIENTED CASE TECHNOLOGIES 2 ECTS cr
Year and	Year 1
Semester	Semester 1
Teacher(s)	Olga Ivanova, Candidate of Science, Associate Professor of System Programming Department
Aims	The student obtains basic skills in information systems design using UML. Upon completion of the course, the student will be able to apply the UML-based modeling tools and engineering methods for the software design and implementation.
Content	Analysis and Extraction of Classes. The Class Diagram. Diagrams of the Internal Structure, Components and Accommodation. Use Case Diagram. The Interaction Diagram. The State Diagram. The Activity Diagram.
Modes of Study	Practical assignments 36 h Course project 33 h Credit test 3 h Total 72 h
Evaluation	Passed Failed. Credit test 30%, practical assignments 70%.
Study Materials	Materials are delivered/announced during classes.

D 0 00	OD IFOT DATABACEC	0 FOTC	
B.2.03	OBJECT DATABASES	2 ECTS cr	
Year and	Year 2		
Semester	Semester 3		
Teacher(s)	Mikhail Zymbler, Candidate of Science, Associate Professor Programming Department	of System	
Aims	The student obtains basic skills in database systems based model. Upon completion of the course, the student will be all and implement applications for object-oriented, object-relating graph, document-oriented and geospatial databases.	student will be able to design nated, object-relational, XML,	
Content	Motivation of Object databases: impedance mismatch proble in database technologies, Object Database Management Grand its activities. Object-relational databases: column object objects, nested tables, subtypes and supertypes (Oracle DB example). Object-oriented databases: ODMG architecture, Operation Language), OQL (Object Query Language), OML Manipulation Language). XML databases and XQuery language XML DBMS as an example). Document-oriented databases DBMS as an example). Graph databases (Neo4j DBMS as a	cch problem, manifests ement Group (ODMG) nn objects, row bracle DBMS as an tecture, ODL (Object e), OML (Object ery language (Sedna atabases (MongoDB	
Modes of Study	Geospatial databases (PostGIS DBMS as an example). Practical assignments 36 h. Self-study 36 h. Total 72 h.		

Evalua	ation
Study	Materials

Passed|Failed. Credit test 30%, practical assignments 70%. Materials are delivered/announced during classes.

Year and Semester Teacher(s) Year Distributed Object Technologies Year 1 Semester 2 Gleb Radchenko, Candidate of Science, Associate Professor of the System Programming Department. Dmitry Nenazhenko, Master of Science, Assistant Lecturer of the System Programming Department. The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the stude will be able to design and implement distributed applications based on	
Semester 2 Teacher(s) Gleb Radchenko, Candidate of Science, Associate Professor of the System Programming Department. Dmitry Nenazhenko, Master of Science, Assistant Lecturer of the System Programming Department. The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the student obtains basic skills in distributed computing systems and service-oriented architectures.	
System Programming Department. Dmitry Nenazhenko, Master of Science, Assistant Lecturer of the System Programming Department. The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the student obtains basic skills in distributed computing systems and service-oriented architectures.	
Dmitry Nenazhenko, Master of Science, Assistant Lecturer of the System Programming Department. The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the student obtains basic skills in distributed computing systems and service-oriented architectures.	
Aims Programming Department. The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the student obtains basic skills in distributed computing systems and service-oriented architectures.	
Aims The student obtains basic skills in distributed computing systems and service-oriented architectures. Upon completion of the course, the student obtains basic skills in distributed computing systems and	;m
service-oriented architectures. Upon completion of the course, the stude	
· · · · · · · · · · · · · · · · · · ·	
will be able to decign and implement distributed applications based on	ent
· · · · · · · · · · · · · · · · · · ·	
RMI, web-services and cloud computing approach.	
Content Definition, classification and history of Distributed Computing Systems.	
The CAP theorem. RMI and distributed object technologies middleware)
stacks: RPC, Java RMI, .NET Remoting, CORBA. Service Oriented Architecture: definition, basic concepts, good practices. Basic standards	lo.
of XML Web Services (WSDL, SOAP, WS-Security, WS-Addressing).	5
The concept of REST Services. Principles and technology of peer-to-pe	ΔΔr
systems. The concept of Grid. Grid platforms: UNICORE. Cloud	561
computing technologies and platforms: Windows Azure, Amazon EC2,	
Google Cloud Platform. Mass computing systems: BOINC platform.	
Modes of Study Practical assignments 36 h.	
Lectures 18 h.	
Self-study 54 h.	
Total 108 h.	
Evaluation Passed Failed.	
Credit test 30%, practical assignments 70%.	
Study Materials 1) Robert Daigneau. Service Design Patterns: Fundamental Design	
Solutions for SOAP/WSDL and RESTful Web Services. 2011. 352 p.	
2) Kai Hwang, Jack Dongarra, Geoffrey C. Fox. Distributed and Cloud	
Computing: From Parallel Processing to the Internet of Things. Morgan	
Kaufmann, 2011. 672 p. 3) John Rhoton, Risto Haukioja. Cloud Computing Architected: Solution	
Design Handbook. Recursive Press, 2011. 385 p.	ı
4) David Patterson, Armando Fox. Engineering Long-Lasting Software:	
An Agile Approach Using SaaS and Cloud Computing. Strawberry	
Canyon LLC, 2012. 412 p.	
5)Tomas Erl. Service-Oriented Architecture: Concepts, Technology, and	d
Design. Prentice Hall, 2005. 792 p.	
Additional materials are delivered/announced during classes.	
Prerequisites Students should be able to develop cross-platform software on high-level	⁄el
language (Java).	
Students should know the principles of object-oriented software design.	
B.2.05 DISTRIBUTED AND PARALLEL 4 ECTS c	er

B.2.05	DISTRIBUTED AND PARALLEL PROGRAMMING	4 ECTS cr
Year and Semester	Year 1, 2 Semester 2, 3	

Teacher(s)	Tatyana Lymar, Candidate of Science, Associate Professor of System
	Programming Department
Aims	The student obtains basic skills in parallel programming. Upon completion
	of the course, the student will be able to design and implement parallel
	algorithms and applications for multi-core, multiprocessor and distributed
	computing systems.
Content	Goals and objectives of parallel processing. Types of parallel processing.
	Architectures of parallel computing systems. Methods for evaluating the
	performance of multiprocessor systems. Principles for the development of
	parallel algorithms. Technological development cycle: partitioning,
	communication, agglomeration and mapping. Complexity analysis of
	parallel algorithms. Speedup and efficiency of parallel algorithms. Parallel
	programming for multiprocessor systems with distributed memory, MPI
	standard. Parallel programming for multiprocessor systems with shared
	memory, OpenMP standard.
Modes of Study	Lectures 18 h
-	Practical assignments 54 h.
	Self-study 72 h
	Total 144 h
Evaluation	2-5. Exam test 50%, practical assignments 50%.
Study Materials	Materials are delivered/announced during classes.

V.2.01	SEMINAR ON ADVANCED TECHNOLOGIES 4 ECTS cr FOR COMPUTER GAME DEVELOPMENT
Year and	Year 1, 2
Semester	Semester 2, 3
Teacher(s)	Pavel Verman, Master of Science, Assistant of System Programming Department
Aims	The student obtains basic practical skills in team computer game development.
Content	Game design document, gameplay proposal, draft project, technical project. Game prototype development. Alpha-version of the game. Beta-version of the game. Game testing. Final version of the game. Demo-version of the game. Presentation of the game. Technical support and maintenance.
Modes of Study	Practical assignments 72 h. Self-study 72 h. Total 144 h.
Evaluation	Passed Failed. Practical assignments 100%.
Study Materials	Materials are delivered/announced during classes.

V.2.02	ARTIFICIAL INTELLIGENCE FOR GAMES	2 ECTS cr
Year and	Year 1	
Semester	Semester 1	
Teacher(s)	Ruslan Miniakhmetov, Master of Science, Lecturer of Sy Programming Department	rstem
Aims	The student obtains basic skills in AI algorithms develop common AI paradigms for game development through e famous algorithms and its usage in typical game situatio completion of the course, the student will be able to app algorithms of artificial intelligence in games developmen	examples of ons. Upon ly methods and

Content Modes of Study	exciting, high quality and efficient computer games. Model graphic game development. Algorithms for chasing, evasion, shooting and collision detection. The A* and genetic path-finding algorithms. Decision-making weight-based and clustering-based algorithms. Optimization of the brute-force algorithm by means of Alpha-Beta pruning. Implementation of first-order logic for an intelligent agent. Practical assignments 36 h. Self-study 36 h.
	Total 72 h.
Evaluation	Passed Failed. Credit test 30%, practical assignments 70%.
Study Materials	Materials are delivered/announced during classes.

V.2.03	COMPUTER ANIMATION AND SIMULATION 2 ECTS cr
Year and	Year 1
Semester	Semester 2
Teacher(s)	Pavel Kostenetskiy, Candidate of Science, Associate Professor of System Programming Department
	Gorskih Alexander, Master of Science, Assistant of System Programming Department
Aims	The student obtains basic skills in computer animation and simulation. Upon completion of the course, the student will be able to work with shader development frameworks, advanced 3D modeling and physics simulation software.
Content	Computer animation and simulation technologies: shader programming, 3D modeling, illumination models, procedural animation, particle systems, post-processing.
Modes of Study	Practical assignments 36 h. Self-study 36 h. Total 72 h.
Evaluation Study Materials	Passed Failed. Credit test 30%, practical assignments 70%. Materials are delivered/announced during classes.
Prerequisites	Computer graphics basic course.

DV.2.01.01	GAME PLATFORM DEVELOPMENT	3 ECTS cr
Year and	Year 2	
Semester	Semester 3	
Teacher(s)	Pavel Kostenetskiy, Candidate of Science, Associate Profe	essor of
	System Programming Department	
	Gorskih Alexander, Master of Science, Assistant of Syster	n
	Programming Department	
Aims	The student obtains basic skills in game development productions	cess. Upon
	completion of the course, the student will be able to design	n and develop
	game frameworks.	
Content	Scene editor development: review, architecture, graphics s	system,
	particle system, resource storing system, draw-call, scripts	s system, Al
	system integration. Animation system: morphing, skeletal	animation,
	frame-based animation, curve-based animation, animation	compression
	techniques. Game development: game architecture, level	editor, loading
	resources. Scene visualization: graphics pipeline, Ubersha	•
	subsystem. Features of design real time visualization system	ems.

Modes of Study
Practical assignments 54 h.
Self-study 54 h.
Total 108 h.
2-5. Practical assignments 50 %, exam 50 %.
Materials are delivered/announced during classes.

Prerequisites

DV.2.02.01	SOCIAL NETWORK GAME DEVELOPMENT 2 ECTS cr
Year and	Year 1
Semester	Semester 2
Teacher(s)	Mikhail Mezhenin, Master of Science, Assistant of System Programming Department
Aims	Students obtain basic knowledge of social gaming mechanics and skills of working with technologies and APIs used to develop games for social networks. Upon completion of the course, each student should present a fully functional game prototype released on one of the social networks.
Content	Introduction: social gaming phenomena, criticisms, typical genres. Game development technologies: HTML5 and Canvas element, JavaScript, IFrame-based applications, MongoDB. Social gaming platforms: VK API, Facebook Graph API. Monetizing and support: balance calculation, ingame purchases, advertising, metrics.
Modes of Study	Practical assignments 36 h. Self-study 36 h. Total 72 h.
Evaluation	Passed Failed. Credit test – 30%, practical assignments – 70%.
Study Materials	Materials are delivered/announced during classes.

Influences Programming Foundations course (bachelor).